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Fig. 1. Our method renders scenes during interactive editing of various types of animations, such as material property changes and geometry transformations,

while supporting free viewpoint movement. Dining Room scene is rendered at about 10 fps (1080 × 920), with varying view points and environment lighting.

Prior approaches to the neural rendering of global illumination typically

rely on complex network architectures and training strategies to model the

global effects. This often leads to impractically high overheads for both

training and inference. The neural radiosity technique marks a significant

advancement by injecting the radiometric prior into the training process, al-

lowing for efficient modeling of the global radiance fields using a lightweight

network and grid-based representations. However, this method encounters

difficulties in modeling dynamic scenes, as the high-dimensional feature

space quickly becomes unmanageable as the number of varying scene pa-

rameters grows. In this work, we extend neural radiosity for variable scenes

through a novel neural decomposition method. To achieve this, we first

parameterize the animated scene with an explicit vector v, which conditions

a high-dimensional radiance field 𝐿𝜃 . We then develop a practical representa-

tion for 𝐿𝜃 by decomposing the high-dimensional feature grid into 3D grids,

2D feature planes, and lightweight MLPs. This strategy effectively models
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the correlation between 3D spatial features and dynamic scene variables,

while maintaining a practical memory and computational cost. Experimental

results show that our method facilitates efficient dynamic global illumina-

tion rendering with practical runtime performance, outperforming previous

state-of-the-art techniques with both reduced training and inference costs.
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1 INTRODUCTION

Global illumination has always been a challenging task in computer

graphics. Recent developments in deep learning have also led to the

use of neural networks for rendering high-quality images, particu-

larly in dynamic scenes involving animated variables like meshes,

materials, and light sources [Baatz et al. 2022; Kallweit et al. 2017;

Zhu et al. 2021]. Some of these methods operate in screen space [Işık

et al. 2021; Nalbach et al. 2017], exploiting the powerful capabilities

of deep generative models. However, this also introduces typical
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limitations of the screen-space techniques, such as view-dependent

artifacts and difficulties in modeling complex global effects. An-

other family of algorithms merges the advantages of screen-space

techniques and the burgeoning field of neural scene representation

techniques [Mildenhall et al. 2021]. These methods often involve

intricate network architectures and sophisticated training processes,

which result in significant computational overheads for network

inference [Diolatzis et al. 2022; Granskog et al. 2021; Zheng et al.

2023]. Additionally, both approaches require training deep neural

networks on a large set of synthetic images, which requires consid-

erable time for both dataset generation and network training.

A promising solution to addressing these challenges is the neural

radiosity technique [Hadadan et al. 2021]. This method efficiently

models the radiance field by incorporating a radiometric prior into

network optimization, utilizing lightweight neural networks and

trainable spatial feature encoding. Apart from the theoretical sim-

plicity and ease of implementation, its key advantage resides in its

independence from pre-rendered images, allowing the expressive-

ness of a view-consistent radiance field. However, while effective

for static scenes, the neural radiosity technique encounters diffi-

culty with dynamic or animated scenes due to the need for frequent

updates and retraining. This also limits its potential application in

real-time rendering pipelines.

In this work, we tackle these challenges and extend the neural

radiosity technique to accommodate dynamic scenes. We first en-

code the dynamic scene using an explicit scene vector v, wherein
each element parameterizes an animated scene variable. To model

the animated radiance field, a straightforward approach is to use

v to condition the network output, which often yields suboptimal

and under-fitted results. To overcome this, we suggest treating each

scene component as an additional dimension beyond the 3D Carte-

sian coordinates. This results in a possible solution to dynamic

neural rendering, where we can utilize high-dimensional feature

grids as learnable encoding to implicitly model the radiance fields

within the multi-variable dynamic scene.

However, the curse of dimensionality inflicts significant chal-

lenges to this method, as a high-dimensional feature grid leads to

an impractical level of memory and computational cost. Inspired

by previous work on viewpoint synthesis for dynamic scenes [Cao

and Johnson 2023; Fridovich-Keil et al. 2023; Shao et al. 2023], we

decompose high-dimensional latent grids into low-dimensional rep-

resentations, where 2D feature planes and lightweight MLPs are

used to model the correlation between scene variables. This de-

composition effectively models multi-variate dynamic scenes while

maintaining reasonable runtime performance. Our implementation

achieves > 10 fps when rendering at 1280×720 on a single RTX3090,

achieving 3.5× speedup on frame rate with better reconstruction
quality compared to the previous state-of-the-art.

Overall, our main contributions are as follows:

• Our approach extends the neural radiosity approach to handle

high-dimensional dynamic scenes with neural rendering.

• We explicitly encode dynamic scenes using scene vector, which
enables the use of high-dimensional grid-based features for

scene representations.

• Our feature decomposition strategy uses low-dimensional im-

plicit representations to model the correlations between scene

variables, avoiding the impractical cost of high-dimensional

representations caused by the dimensional curse.

2 RELATED WORK

Neural Rendering. Deep learning techniques have been widely

applied to assist and enhance rendering applications (i.e. neural

rendering). Earlier works tend to use image-space techniques and

employ generative networks for post-process tasks such as denois-

ing [Işık et al. 2021; Vogels et al. 2018] and up-scaling [Wu et al.

2023; Zhong et al. 2023], which often rely on high-quality ground

truth images for training. Convolutional networks can also simulate

screen-space effects, such as diffuse indirect lighting and motion

blur [Nalbach et al. 2017]. Neural networks have also been leveraged

to enhance the Monte Carlo importance sampling process [Dong

et al. 2023; Müller et al. 2019; Zheng and Zwicker 2019], employ-

ing specialized network architectures to directly learn to sample

complex manifolds.

Another emerging research trend focuses on encoding scene fea-

tures with implicit representations and then decoding them into

synthetic images with neural networks. Ren et al. [2013] utilized a

fixed set of precomputed renderings to train neural networks, ap-

proximating indirect illumination with dynamic lights. Müller et al.

[2021] used a lightweight network with online training as the radi-

ance cache to approximate indirect illumination for real-time path

tracing. Eslami et al. [2018] trained an encoder-decoder network

on a variable scene by encoding multiple observations into a scene

representation vector. Granskog et al. [2020] extended this idea by

using an adaptively partitioned scene representation containing dis-

entangled information of lighting, material, and geometry. However,

their method still needs additional views for novel-view synthesis.

Zheng et al. [2023] used networks to model the light transfer func-

tion between individual objects and the environment, subsequently

composing them to produce the global illuminated images.

Recently, Hadadan et al. [2021] introduced neural radiosity, ex-

ploiting the rendering equation as a prior for network optimization.

While their method effectively models radiance fields using light-

weight networks, it is restricted to static scenes. More recently,

Coomans et al. [2024] extended neural radiosity to dynamic scenes

by learning a 1D manifold within the dynamic parameter space, re-

stricting them to a 4D space. Our work aims to further extend neural

radiosity to handle high-dimensional dynamic scenes without being

confined to one additional dimension, while maintaining only a

moderate increase in computational and storage overhead. Diolatzis

et al. [2022] encoded scene animations with an explicitly param-

eterized vector to condition the network predicted radiance field,

serving a similar purpose to our method. By incorporating MCMC-

guided training, their method achieves state-of-the-art reconstruc-

tion quality for the neural rendering of dynamic scenes. However,

their method still requires path-traced image patches for training.

Moreover, their method requires extensive computational overhead

due to their deep network. By contrast, our method achieves better

visual quality with a 3.5× frame rate boost by developing a trainable

encoding with our feature decomposition technique.
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Network Encoding. The encoding of inputs to neural networks is

crucial for their performance. Mildenhall et al. [2021] applied Fourier

feature mapping to project 3D coordinates to a high-dimensional

space before feeding into the network, which is verified to be vi-

tal for modeling high-frequency details in complex scenes [Tancik

et al. 2020]. Another set of approaches employ trainable encod-

ing with multi-resolution spatial grids [Hadadan et al. 2021] or

hash tables [Müller et al. 2022], therefore reducing the network’s

burden by using sparse embedding to model spatial features. This

concept is later extended to applications on dynamic scenes. Li

et al. [2022] incorporated temporal latent encoding into the network

input. Fridovich-Keil et al. [2023], Cao and Johnson [2023], and

Shao et al. [2023] used 4D voxel feature grids to represent dynamic

scenes. By decomposing the straightforward 4D grids into multiple

2D planes, they achieve the goal of reducing spatial complexity

while maintaining model quality. In our work, we parameterize

dynamic scenes with an 𝑛-dim explicit vector, enabling interactive

editing and free interpolating across multiple animated components,

instead of just one time dimension. With the aforementioned tech-

niques, this leads to quadratic memory and computational costs,

which quickly becomes unmanageable as 𝑛 grows. In this work, we

model the high-dimensional scenes with linear computational and

memory costs regarding the scene dimensionality. The key insight

is that it is sufficient to model the O(𝑛2) pairwise correlations be-
tween the additional scene variables using non-linear lightweight

MLPs, which naturally fit into neural rendering applications.

Radiosity Algorithm. The radiosity algorithm is first suggested

by Goral et al. [1984] to solve indirect illumination within diffuse

scenes, with a detailed system introduction provided by Sillion and

Puech [1994]. Similar to the finite element method, their approach

involves dividing the scene into discrete patches and computing

the light transfer across these patches, assuming uniform radiance

distribution on each. Their method is extended to non-diffuse scenes

by Immel et al. [1986]. To address the complexity of realistic lighting,

Zatz [1993] applied the Galerkin integral equation to approximate

surface radiance as higher-order polynomials. However, the com-

plex visibility among scene objects creates discontinuities that are

difficult to model, leading to further research on different basis

functions to better fit the radiance distributions [Cohen et al. 1988;

Gortler et al. 1993; Lehtinen et al. 2008; Lischinski et al. 1992]. More

recently, Hadadan et al. [2021] introduced machine learning to im-

prove the fitting of radiance distributions within the scenes. Despite

these advancements, prior methods mainly focus on static scenes.

Our work extends the radiosity technique to higher-dimensional

dynamic environments while maintaining practical overhead.

3 BACKGROUND

3.1 Rendering Equation

Physical light transport simulation fundamentally relies on the ren-

dering equation [Kajiya 1986], which formulates the outgoing radi-

ance as the sum of integrated incident radiance and self-emission:

𝐿(x, 𝜔𝑜 ) = 𝐿𝑒 (x, 𝜔𝑜 ) +
∫
H2

𝑓𝑟 (x, 𝜔𝑖 , 𝜔𝑜 )𝐿𝑖 (x, 𝜔𝑖 )
��(n · 𝜔𝑖 )

��
d𝜔𝑖 , (1)

where 𝐿(x, 𝜔𝑜 ) denotes the outgoing radiance at point x in direc-

tion 𝜔𝑜 , and 𝐿𝑒 (x, 𝜔𝑜 ) denotes the radiance emitted from point x
in direction 𝜔𝑜 . The integral accumulates the incoming radiance

𝐿𝑖 (x, 𝜔𝑖 ) from all directions over the hemisphereH2
around the nor-

mal, modulated by the bidirectional reflectance distribution function

(BRDF) 𝑓𝑟 (x, 𝜔𝑖 , 𝜔𝑜 ).
The rendering equation is recursive in nature, as the incoming

radiance at a point is itself the outgoing radiance from other points

in the scene, which makes solving the integral challenging.

3.2 Neural Radiosity

To solve the rendering equation, Hadadan et al. [2021] proposed

Neural Radiosity by exploiting the rendering equation as a prior for

network training. They train a neural network with parameter 𝜃 to

approximate the outgoing radiance 𝐿(x, 𝜔𝑜 ). The neural network
is optimized by minimizing the norm of the rendering equation

residual, which is the left-hand side (LHS) minus the right-hand

side (RHS):

𝑟𝜃 (x, 𝜔𝑜 ) = 𝐿𝜃 (x, 𝜔𝑜 ) − 𝐿𝑒 (x, 𝜔𝑜 )

−
∫
H2

𝑓𝑟 (x, 𝜔𝑖 , 𝜔𝑜 )𝐿𝜃 (x′ (x, 𝜔𝑖 ),−𝜔𝑖 )
��(n · 𝜔𝑖 )

��
d𝜔𝑖 , (2)

where x′ ((x, 𝜔𝑖 ),−𝜔𝑖 ) means the closest surface intersection of the

ray from x in direction 𝜔𝑖 . The reflected radiance (the last integral

in Eq. 2) is estimated with additionally traced right-hand side rays

(RHS rays) using Monte Carlo integration, while the radiance value

is queried by the network prediction 𝐿𝜃 (x, 𝜔𝑜 ).
This optimization is performed using a mean squared error (MSE)

loss that minimizes the residual of the rendering equation (Eq. 2)

across various points and directions in a scene:

𝜃∗ = argmin

𝜃

∫
S

∫
H2

𝑟𝜃 (x, 𝜔𝑜 )2d𝜔𝑜dx, (3)

where S is the scene surfaces andH2
is the upper-hemisphere over

the shading point x.
By leveraging the radiometric prior for network optimization,

Neural Radiosity efficiently models the global radiance field with

lightweight networks and trainable spatial feature grids, while be-

ing view consistent and without using any image-space techniques.

Based on its principles, our work extends neural radiosity to dy-

namic scenes by designing a practical encoding for high-dimensional

animated scenes.

4 METHOD

In this section, we introduce the design of dynamic neural radiosity

using our proposed neural feature decomposition technique.

4.1 Scene Representation and Trainable Encoding

To describe a dynamic scene with predefined starting and ending

states for 𝑛 animated components, we can use a scalar value 𝑣𝑖 ∈
[0, 1] for encoding and interpolating the states for each. These values
together constitute the explicit scene vector v ∈ R𝑛 . This approach
models a bijective mapping between an animation state and a scene

vector v. We illustrate the details of the scene vector in Fig. 2.

3
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LHS Ray

RHS Ray

Scene Vector

Fig. 2. Illustration of the scene vector and optimization procedures. In the

modified Cornell Box scene, we have a rotating box and a translating

sphere, where the animation state is parameterized with scalar floats 𝑣𝑖 and

𝑣𝑗 in [0, 1], together constituting a 2D scene vector v. To train our model,

we first sample random vertex x and outgoing direction 𝜔𝑜 (the LHS ray).

The RHS of the rendering equation (incident rays) is then estimated by

sampling multiple RHS rays, with each LHS/RHS ray yielding a network

query. Finally, an optimization step is performed with the residual (Eq. 10)

estimated using the query results for network optimization (Eq. 12).

To model the spatially varying dynamic radiance field with ani-

mated components, previous works directly provide the animation

state v, concatenated with the 3D spatial coordinate x and the view-

ing direction 𝜔𝑜 as inputs [Diolatzis et al. 2022]. Conditioned on

them, the network then predicts the radiance 𝐿𝜃 (x, 𝜔𝑜 , v) to approx-
imate the ground truth radiance, where 𝜃 denotes the parameters

of the network. However, relying only on the network to model the

high-frequency details inflicts high demand on both the training

data and network capacity, resulting in higher costs for both train-

ing and inference (e.g., ≈ 5 fps). To address this, previous NeRF-like

applications generally use trainable parametric encoding for net-

work input to model the high-frequency features (discussed in Sec.

2), among which a spatial 3D grid is most commonly used [Müller

et al. 2022]. This results in less demand for the network capacity,

effectively trading a larger memory cost for less computational

overhead.

In this work, we also leverage trainable spatial encoding with a

multi-resolution design to model dynamic radiance fields. Specifi-

cally, a set of 3D multi-resolution spatial grids consists of 𝐿 uniform

grids𝐺𝑙 , each covering the entire scene bounding volume with a res-

olution of 𝐷3

𝑙
. For the grid𝐺𝑙 of the 𝑙-th resolution level, a trainable

feature vector 𝑦 ∈ R𝐹 is assigned to each of its lattice points. To get

the parametric encoding for 3D inputs x, we trilinearly interpolate

the 2
3
features of the voxel surrounding x. Formally:

𝐺 (x) =
𝐿⊕
𝑙=1

trilinear

(
x,𝑉𝑙 [x]

)
, (4)

where 𝑉𝑙 [x] is the set of features nearby x within the 𝑙-th grid 𝐺𝑙 ,

and 𝐺 : R3 → R𝐿×𝐹 is the parametric encoding function.

Spatial feature grids could also be extended to higher dimension-

ality, which can be used to encode the additional inputs required for

an animated radiance field. Specifically, to model a dynamic scene

with 𝑛 animated components, one can use an (𝑛 + 3)−dim feature

grid as the trainable encoding for 𝐿𝜃 (x, 𝜔𝑜 , v), where x ∈ X is the

3D spatial coordinate and v ∈ V is the 𝑛-dim explicit scene vector.

4.2 Neural Feature Decomposition

While the use of a high-dimensional grid to encode the animated

scene is intuitive and straightforward, this results in impractical per-

formance due to the curse of dimensionality. Specifically, to encode

a dynamic scene with 𝑛 animated components, each resolution level

of the (𝑛+3)-dim grid now has𝐷𝑛+3
𝑙

feature vectors, while querying

for input yielding interpolation between 2
𝑛+3

nearby features. This

causes roughly 𝐷𝑛× storage cost and 2
𝑛× computational overhead,

which quickly becomes unmanageable as 𝑛 grows. Although the

hash grid maintains physical memory overhead within a fixed limit,

exponentially increasing the number of grids can lead to extensive

hash collisions, diminishing its effectiveness in modeling dynamic

radiance distribution.

To this end, we design a practical parametric encoding for dy-

namic scenes using multiple decomposed parametric encoding to

model the additional animated variables and their spatial corre-

lations, respectively. As illustrated in Fig. 3, we decompose the

aforementioned (𝑛 + 3)-dim grid into three distinct components:

• A space-only 3-dim feature grid 𝑓X (x);
• 3𝑛 2-dim feature planes combining the scene vector and spa-

tial position: 𝑓XV (x, v);
• A lightweight MLP 𝑓V for modeling the correlations between

scene variables.

These components can be expressed as follows:

𝑓X (x) = 𝐺 (𝑥,𝑦, 𝑧) (5)

𝑓XV (x, v) =
𝑉⊕
𝑖=1

(𝑃𝑖,1 (𝑥, 𝑣𝑖 ) ⊕ 𝑃𝑖,2 (𝑦, 𝑣𝑖 ) ⊕ 𝑃𝑖,3 (𝑧, 𝑣𝑖 )) (6)

𝑓V (v) = MLP(Freq(v))

= MLP(. . . , cos(20𝑣𝑖 ), sin(20𝑣𝑖 ), . . . , cos(2𝐿𝑣𝑖 ), sin(2𝐿𝑣𝑖 ), . . . )
(7)

where x = (𝑥,𝑦, 𝑧) represents the spatial coordinates, and v =

(𝑣1, . . . , 𝑣𝑛) represents the explicit scene vector.𝐺 (·, ·, ·) denotes the
3D feature grid for modeling spatial-only features, 𝑃 (·, ·) denotes
the feature plane for modeling the correlation between the variables

and spatial features, while Freq(·) denotes the frequency encoding

[Mildenhall et al. 2021] applied to the scene vector v before feeding

into the MLP. The

⊕
and ⊕ denote feature aggregation operations

between different grids and resolution levels, respectively. These

components are then aggregated to get the final encoding 𝑓 (x, v)
for v:

𝑓 (x, v) = 𝑓X (x) ⊕ 𝑓XV (x, v) ⊕ 𝑓V (v) . (8)

Discussion. In this section, we introduce the design of a prac-

tical implicit representation 𝑓 (x, v) for high-dimensional scenes

parameterized by v. Unlike the decomposed planes used in NeRF

applications [Cao and Johnson 2023; Shao et al. 2023], we use an

MLP to model the O(𝑛2) pairwise correlations between 𝑛 scene

4
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Albedo

(e) Auxiliary features

SH Projection

Frequency 
Encoding

(d) Outgoing direction

...

(a)
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(c)       

Fig. 3. Illustrating the network architecture of our method. (a) A 3D multi-

resolution grid 𝑓X for modeling animation-independent features. (b) 2D

feature planes for modeling the correlation between the spatial features

and the animated components (𝑓XV ). (c) A tiny MLP with input frequency

encoding, modeling the correlation in-between the animated variables (𝑓V ).

(d) Projected coefficients onto the spherical harmonics basis functions of

the outgoing direction 𝜔𝑜 . (e) Auxiliary geometry features (surface normal,

albedo, etc.). The aforementioned encoded features are concatenated to

obtain the final input, which is then fed into the lightweight MLP to predict

the reflected radiance 𝐿𝜃 (x, 𝜔𝑜 , v) .

variables, thus avoiding quadratic overhead of their methods. The

key observation resides in the fact that in our neural rendering

setup, most scene variables have low correlations with each other,

which is sufficient to model using a single MLP. The scene radiance

fields, on the other hand, are still mostly dependent on spatial po-

sitions x. In Sec. 6, we show our method more effectively models

high-dimensional radiance distribution conditioned on x, v, and 𝜔o,

outperforming previous methods using integrated MLPs, while with

a practical computational overhead.

4.3 Optimization

To optimize our proposed method, we minimize the residual loss

of the rendering equation over the high-dimensional space V ex-

panded by the 𝑛 animated components. For each training step, we

uniformly sample the scene space V to obtain the current scene

vector v. For the specific scene animation state defined by v, the
residual of the rendering equation can be expressed as:

𝑟𝜃 (x, 𝜔𝑜 , v) = 𝐿𝜃 (x, 𝜔𝑜 , v) − 𝐿𝑒 (x, 𝜔𝑜 , v)

−
∫
H2

𝑓 (x, 𝜔𝑜 , 𝜔𝑖 , v)𝐿𝜃 (x′ (x, 𝜔𝑖 ),−𝜔𝑖 , v)
��(n · 𝜔𝑖 )

��
d𝜔𝑖 . (9)

For the left-hand side (LHS) of the rendering equation (Eq. 1), we

first uniformly sample positions x𝑗 on the scene surface, as well as

the outgoing directions 𝜔
𝑗
𝑜 within the upper-hemisphere of that x𝑗 .

We then query the network to get the radiance 𝐿𝜃 (x𝑗 , 𝜔
𝑗
𝑜 , v). For the

right-hand side (RHS) of the rendering equation, we employ Monte

Carlo integration to estimate it. Specifically, we sample reflection

direction𝜔
𝑗,𝑘
𝑖

and intersect with the scene at x′ (x𝑗 , 𝜔 𝑗,𝑘
𝑖

). We query

the network to get the radiance 𝐿𝜃 (x′ (x𝑗 , 𝜔
𝑗,𝑘
𝑖

),−𝜔 𝑗,𝑘
𝑖

, v). Since
the distribution in the outgoing direction is uniform, the sampling

weight is 𝑝 (𝜔 𝑗,𝑘
𝑖

) = 1

2𝜋 . This process is repeated for 𝑀 times, and

the average value is taken as the result (Fig. 2):

𝑟𝜃,𝑀𝐶 (x𝑗 , 𝜔
𝑗
𝑜 , v) = 𝐿𝜃 (x𝑗 , 𝜔

𝑗
𝑜 , v) − 𝐿𝑒 (x𝑗 , 𝜔 𝑗

𝑜 , v)

− 1

𝑀

𝑀∑︁
𝑘=1

𝑓 (x𝑗 , 𝜔 𝑗
𝑜 , 𝜔

𝑗,𝑘
𝑖

, v)𝐿𝜃 (x′ (x𝑗 , 𝜔
𝑗,𝑘
𝑖

),−𝜔 𝑗,𝑘
𝑖

, v)
���(n · 𝜔 𝑗,𝑘

𝑖
)
���

𝑝 (𝜔 𝑗,𝑘
𝑖

)
.

(10)

We define the loss of the network by integrating the square of

the residual over the scene space, surface, and hemisphere:

L(𝜃 ) = ∥𝑟𝜃 (x, 𝜔𝑜 , v)∥22 =
∫
V

∫
S

∫
H2

𝑟𝜃 (x, 𝜔𝑜 , v)2 d𝜔𝑜 dx dv,

(11)

whereV indicates the scene space, S indicates the surface space,

H2
indicates the hemisphere of the point x. This loss could be

estimated by Monte Carlo integration (Eq. 10).

The optimal network parameter 𝜃∗ is thus

𝜃∗ = argmin

𝜃

L(𝜃 ). (12)

To help our model better learn the high frequency details in

the dynamic radiance field 𝐿(x, 𝜔𝑜 , v), we empirically propose the

following practices:

Additional Inputs. To model 𝐿𝜃 (x, 𝜔𝑜 , v) we also provide the re-

flection direction of outgoing radiance with respect to the normal

𝜔𝑟 = 2n−𝜔𝑜 , as well as the auxiliary geometry features as network

inputs in addition to the trainable encoding 𝑓 (x, v). Specifically, we
encode 𝜔𝑟 using the spherical harmonic basis [Verbin et al. 2022].

The geometry features consists of the albedo and surface normal

of the primary hit point, which is encoded with OneBlob encoding

[Müller et al. 2019] and spherical harmonic basis, respectively.
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Adaptive RHS Samples. During our experiments, we observed that

the number of RHS samples, denoted𝑀 , significantly impacts the

quality of network convergence. However, a larger𝑀 can also lead

to a slower training pace. To address this, we adopted an adaptive

strategy for incrementing𝑀 . Initially set at𝑀 = 32, we double𝑀 in

every one-fifth of the total training steps. This approach effectively

balances performance and quality.

5 IMPLEMENTATION

System. We implement our algorithm using theMitsuba3 renderer

[Jakob et al. 2022]. The network is implemented using PyTorch

[Paszke et al. 2019] and tiny-cuda-nn [Müller 2021]. We train our

model on an Nvidia RTX 4090 GPU and render images on an Nvidia

RTX 3090 GPU.

Renderer Integration. To render dynamic scenes with our pro-

posed method, we first generate geometry and texture information

and feed them into the network. Specifically, we first ray-intersect

the camera rays to obtain the primary shading point, as well as the

view directions 𝜔𝑜 and scene vector v for network queries. Once

the network has computed the approximated radiance 𝐿𝜃 , we copy

the shaded pixel data onto the OpenGL frame-buffer for present-

ing to the display. During this process, all the data remains on the

GPU memory via data inter-operation between multiple APIs and

without any CPU-GPU data transfer.

Antialiasing. In our method, we use 1-sample-per-pixel network

queries to achieve interactive rendering of global illuminated scenes.

However, this leads to aliasing issues, particularly noticeable around

areas with high-frequency texture and geometry changes. We im-

plement image-space anti-aliasing techniques (FXAA) [DesLauriers

2021] in the pixel shader to alleviate this issue and set the kernel

radius to 4 pixels. This significantly reduces the aliasing issue while

hardly increasing the performance overhead (< 1ms per frame).

Architecture & Training. In our experiments, for 3D spatial grid 𝑓X ,
we utilize a multi-scale feature grid consisting of 8 resolution levels,

with the coarsest resolution set at 32. Each voxel point is assigned

with 8 learnable parameters per resolution level. For 2D feature

planes 𝑓XV , we reduce the resolution level to 4 and the number of

features per point to 2. The lightweight MLP 𝑓V has 4 hidden layers,

each containing 128 neurons. Its frequency encoding has 𝐿 = 8 levels.

The latent features of each level are then concatenated to obtain

the final encoding 𝑓 (x, v), then fed to a fully connected network.

The architecture of the network includes 4 hidden layers, each

containing 256 neurons. For the optimization of network parameters,

we employ the Adam optimizer. The initial learning rate was set to

1× 10
−3

. Furthermore, to refine the training process, we implement

a decay factor of 0.33 at every one-third interval of the total training

duration.

Specular Surfaces. Experimentally, we find that the network strug-

gles to accurately capture the reflected radiance of specular surfaces

(e.g. mirrors) with queries from the LHS network. This is because

specular BSDFs are Dirac delta lobes with respect to the outgoing

direction𝜔𝑜 , resulting in view-dependent high frequency variations.

Following the practices of previous work [Hadadan et al. 2021], we

trace secondary rays on specular intersections until a non-specular

surface is hit. This effectively models the reflected radiance while

avoiding relying on the network for modeling specular distributions.

For BSDFs with multiple Dirac delta lobes, tracing multiple rays for

each lobe might be a possible solution, which is beyond the scope

of this work.

6 RESULTS

6.1 Comparisons

• 7D Dining Room scene has rotational environment lighting,

two dynamic ceiling lamps, a wall with dynamic reflectance,

as well as three animated objects.

• 5D Living Room scene has blinds for the windows to control

the incident light from the environment, as well as a ceiling

lamp with varying intensity and height. We also make the

table animated along the 𝑥𝑦 plane.

• 6D Veach Door scene has three animated meshes, an ani-

mated door with a changing amplitude of opening, as well as

the floor with varying reflectance.

• 6D Bedroom scene has a rotational environment lighting,

two walls with varying reflectance, as well as three animated

meshes.

We refer readers to our supplemental video for the detailed anima-

tion setup in our test scene.

We train ourmodel on a single Nvidia RTX 4090 with 5 ∼ 10 hours

per scene. Our model generally takes 1 hour to achieve acceptable

results. However, a longer training process is needed if higher visual

quality is desired, resulting in a trade-off between performance

and training overhead. We show our results on scenes with edited

viewpoints and animated scene states in Fig. 13.

We compare our method with equal-time path tracing (PT), PT

with Monte Carlo denoiser (Oidn) [Áfra 2023], and the state-of-the-

art neural rendering method, Active Exploration (AE) [Diolatzis et al.

2022]. For AE, we use a variant that traces additional rays on specular

surfaces to enhance quality beyond the original approach. For all

the comparisons, we use a single RTX 3090 for rendering and MAPE

as the error metric to measure the quality of the reconstruction. As

shown in Fig. 8, denoised Monte Carlo (Oidn) tends to suffer from

loss of high-frequency details. Moreover, this method fails to account

(b) Ours(a) Reference (c) NeLT

0.0063MAE

Time (ms) 72.2ms 300.6ms

0.0070

Fig. 4. We compare our method with NeLT [Zheng et al. 2023], and report

the inference time cost per frame and mean average error (MAE) to ensure

consistency with the metrics used in NeLT. Note that the Nelt-Box scene is

reproduced with our setup, which may lead to visual differences in lighting

and material. Our method shows superior performance over NeLT, with a

close MAE value.
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for the temporal coherence, resulting in flickering artifacts under

sequential frames that can be inspected (see our supplementary

video for details). For AE, the results indicate that while their method

achieves moderate quality utilizing image-space techniques, both

viewpoint flexibility and synthesis quality are limited by the training

data, placing significant demands on the dataset and training process.

Our method achieves better visual quality than AE, while reducing

training time and obtaining an approximately 3.5× boost of frame

rate. This also makes our method practical for integrating interactive

and even real-time rendering pipelines.

0.093 0.085

0.088 0.087

[Coomans et al. 2024] Ours Reference

0.064 (57.8ms) 0.055 (54.1ms) MAPE

0.077 0.102

0.144 0.168
0.091 (58.8ms) 0.107 (54.8ms) MAPE
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Fig. 5. We evaluate the performance of our method with [Coomans et al.

2024], measuring the inference time cost per frame and MAPE error. This

test was conducted on an Nvidia RTX 4090 at a resolution of 1024 × 1024.

We also compare our method with NeLT [Zheng et al. 2023] with

the pre-trained model and the rendering framework provided by

the authors. We reproduce the Nelt-Box scene in their experiments

using Mitsuba. As shown in Fig. 4, both methods model realistic

global illumination with dynamic lighting andmoving objects, while

our method has a 4× higher frame rate than NeLT. However, we

should note that NeLT focuses on object editing generalization

across scenes, with linear inference cost of the number of editable

objects. Moreover, their method requires extensive training bud-

gets (several days on multiple GPUs). Our method, on the other

hand, targets precomputed dynamic global illumination with more

efficient training and inference performance.

Coomans et al. [2024] extended neural radiosity method to dy-

namic scenes by using a 4D grid to model only 1D animation. In

contrast, our method can model higher-dimensional dynamics. We

conduct a comparison with Coomans et al. [2024] on two 1D dy-

namic scenes (Dining Room and Bedroom with rotational environ-

ment lighting). To ensure a fair comparison, we employ a similar

network capacity: an MLP with 4 hidden layers and 128 neurons

per layer. As shown in Fig. 5, our method achieves quality and effi-

ciency comparable to theirs in 4D scenes. The primary difference

lies in the modeling approach: our method uses multiple 2D planes

for decomposition, whereas theirs utilizes a 4D hash grid to model

the radiance field. This decomposition enables us to reduce mem-

ory usage to 118.41 MB, compared to 157.71 MB required by their

approach.

6.2 Evaluation

Performance Analysis on Scene Dimensionality. We evaluate the

scalability of our method regarding scene dimensionality by con-

ducting performance analysis on a high-dimensional scene with

23 variables. As shown in Fig. 6, our method accurately models

the spatio-directional scenes even conditioned on high-dimensional

inputs. We also analyze the detailed performance of different compo-

nents of the network in Tab. 1. Unlike the k-planemethod [Fridovich-

Keil et al. 2023] that requires quadratic computational overhead

regarding dimensionality, our designed representation exhibits lin-

ear cost on the number of scene variables. Moreover, we hardly

notice any degradation of quality as the dimensionality of the scene

increases.

Comparison with Fine-tuned Neural Radiosity. Neural representa-
tion is capable of adapting to new data, potentially by fine-tuning

with a few training samples of the new domain. To this end, we

compare the reconstruction quality of our method with fine-tuned

Fig. 6. Rendering of a high-dimensional scene (23D) with 8 animatedmeshes

and 15 dynamic materials. Our method accurately captures the glossy

reflections from the incident environment lighting.

Table 1. We conduct performance analysis on a high dimensional scene

(23D) to evaluate the effect of different scene dimensionality on computa-

tional overhead, as well as the performance breakdown of different compo-

nents of our network architecture.

dimension 7 12 16 23

12.1ms 23.4ms 32.2ms 45.1ms

𝑓X + 𝑓XV
118.9MB 128.9MB 136.9MB 150.8MB

3.6ms 4.9ms 5.8ms 9.1ms

𝑓V
0.3MB 0.3MB 0.4MB 0.4MB

19.0ms 21.8ms 24.2ms 28.5ms

MLP

1.2MB 1.3MB 1.4MB 1.5MB

34.6ms 50.1ms 62.2ms 82.7ms

total

120.4MB 130.5MB 138.6MB 152.8MB

MAPE 0.069 0.086 0.107 0.085
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Neural Radiosity (NR) [Hadadan et al. 2021]. Specifically, we slightly

perturb the scene state v, then visualize the reconstruction error of

NR with respect to the number of fine-tuning steps. We train the

NR on the static scene for about 2 hours. The fine-tuning process

requires approximately 60 optimization steps, taking around 10 sec-

onds to converge to comparable quality to our method (see Fig. 10).

This limitation prevents the application of their method to real-time

rendering of dynamic scenes.

0.063

Reference RHS (64spp) RHS (512spp)

MAPE/Time 0.102 / 1.40s 0.043 / 11.02s

0.092 0.047

0.169

Fig. 7. We visualize the image results by sampling additional RHS rays on

the first intersection, with 64spp and 512spp, respectively. Given sufficient

time, our method effectively models high frequency details (e.g., glossy

reflections) that are indistinguishable from the ground truth images.

RHS Rendering. Given a sufficient time budget, we can also render

the image by estimating the right-hand side (RHS) of the rendering

equation (Eq. 1) using Monte Carlo integration. As shown in Fig. 7,

the image quality increases as the sample count grows, especially

for areas with high-frequency details (e.g., glossy reflections).

Network Design Choices. We conduct ablation studies to evaluate

the effectiveness of different design choices of our method on the

Dining Room scene, as shown in Fig. 12. We first validate the effec-

tiveness of the feature decomposition method by excluding the two

types of network components 𝑓XV and 𝑓V , respectively. Both types

of the feature plane contribute to the final visual quality, while 𝑓XV
has more influence under a specific animation state. We also note

that the adaptive RHS sample count significantly reduces the MAPE

error while not increasing training time. Last but not least, we show

the FXAA implementation significantly alleviates the aliasing issue

with minimal computational overhead.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Wepresent dynamic neural radiosity for rendering high-dimensional

dynamic scenes. To achieve this, we first use an explicitly parame-

terized scene representation to condition the network on the scene

animation state. We then develop a practical trainable encoding for

the high-dimensional scene representation to model the dynamic

radiance distribution. Our method efficiently models the dynamic

radiance changes of multi-variate animated scenes, using only mod-

erate additional computation and storage compared to the common

feature 3D grids used for static scenes. Moreover, this leaves the net-

work focused on decoding the implicit features into explicit radiance

values only, allowing the network to be lightweight for both faster

training and inference. Compared to previous work, our method

enables better visual quality that can be rendered from arbitrary

views, while with an approximately 3.5× higher frame rate.

Despite the effectiveness of our method, there are still some limi-

tations on visual quality. Specifically, sampling and reconstruction

issues reside in our current setup due to the fact that we use LHS

network queries with 1 sample-per-pixel for rendering. This results

in Monte Carlo noise on surfaces with multiple specular lobes (e.g.,

dielectric materials), as only one lobe is sampled in our current setup

(discussed in Sec. 5). To enhance quality, multiple samples per pixel

can be used, though this comes at the cost of reduced performance.

We demonstrate the improved rendering of dielectric materials by

increasing the samples per pixel (spp) in Fig. 11. In addition, it can

be straightforward to alleviate this noise issue with auxiliary tem-

poral denoising techniques (e.g., temporal anti-aliasing), which is

orthogonal to our work.

In future work, we aim to explore more efficient techniques to

accelerate and enhance both the training and inference processes.

Specifically, the rendering quality is closely tied to estimating the

RHS integral of the rendering equation. Therefore, a more efficient

algorithm for estimating the RHS could yield higher quality results.

For example, integrating an efficient BDPT renderer capable of han-

dling difficult paths, such as proxy tracing [Su et al. 2024], or a

progressive photon mapping algorithm that can synthesize caus-

tic effects with good convergence, such as CPPM [Lin et al. 2020],

could greatly benefit the training process and produce more realistic

results in detailed illumination. In our pilot study, we observed that

the quality of RHS samples significantly impacts the convergence

process. However, identifying an optimal RHS estimation setting

that improves the quality of neural radiosity-type algorithms still

requires further investigation. Another promising avenue could be

adaptively allocating the feature space, where high-frequency fea-

tures that are hard to model occupy a larger portion of the trainable

encoding space.
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Fig. 8. Visual comparisons on multiple test scenes. We compare the performance of our method to path tracing (PT), denoised PT (Oidn [Áfra 2023]), and

Active Exploration (AE) [Diolatzis et al. 2022]. For fair comparisons, we increase the per-pixel sample count (spp) for the path-tracing-based methods to

align their frame time costs with ours. For each scene, we report the MAPE error and the average time per frame for each method (the value present in the

bottom-right corner indicates the MAPE of the cropped image). Additional visualizations of sequential frames in dynamic scenes and interactive editing of

animated components are included in our supplementary video.
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Fig. 10. We compare the reconstruction quality between our method and

fine-tuned Neural Radiosity (NR) [Hadadan et al. 2021]. After the scene state

changes, NR generally needs about 60 training steps (10s) to converge to our

method’s quality, making it impractical to adapt NR directly to dynamic

scenes.
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Fig. 11. The image quality can be improved by increasing samples per pixel

for LHS, using 1 spp, 16 spp, and 128 spp, respectively. With sufficient rays,

our method can accurately produce the correct result for the dielectric

material.
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Fig. 12. We validate the effectiveness of different design choices by modifying and comparing the model components to our full method. We show the results

of different methods for the Dining Room scene. Our full method has better visual quality, especially in the areas with high-frequency details (e.g., the

silhouette of the shadows).
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Interactive Editing View-points and Scene States

Fig. 13. Interactively edited camera poses and animated scene components on multiple scenes. We demonstrate the manipulation of animated lighting,

geometry, and materials. Details of the animated components under sequential frames are included in our supplemental video.
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