
Efficient Neural Path Guiding with 4D Modeling

HONGHAO DONG, Peking University, China

RUI SU, Peking University, China

GUOPING WANG, Peking University, China

SHENG LI
∗
, Peking University, China

0.6235 0.0907 0.0428 0.0425 relMSE
PPG (190s) NPM (210s) Ours-4D (261s) Ours-Prog.(233s) Reference

0.4338 0.3393 0.2108 0.2326 relMSE
PPG (125s) NPM (137s) Ours-4D (200s) Ours-Prog.(166s) Reference

Application 2: Spectral RenderingApplication 1: Motion Blur

NPM
0.070 (210s)

NPM
0.339 (137s)

Ours
0.211 (166s)

Ours
0.036 (233s)

Fig. 1. Our 4D neural path guiding can efficiently model the local target distribution conditioned on additional domains (e.g., time and wavelength). We

investigate the benefits of our method on typical distributed ray tracing applications, including motion blur rendering on dynamic scenes, as well as spectral

rendering. Our method achieves better importance sampling quality at a reasonable computational overhead.

Previous local guiding methods used 3D data structures to model spatial radi-

ance variations but struggled with additional dimensions in the path integral,

such as temporal changes in dynamic scenes. Extending these structures to

higher dimensions also proves inefficient due to the curse of dimensionality.

In this study, we investigate the potential of compact neural representations

to model additional scene dimensions efficiently, thereby enhancing the

performance of path guiding in specialized rendering applications, such as

distributed effects including motion blur. We present an approach that mod-

els a higher dimensional spatio-temporal distribution through neural feature

decomposition. Additionally, we present a cost-effective approximate with

lower-dimensional representation to model only subspace by progressive

training strategy. We also investigate the benefits of modeling correlations

with the additional dimensions on typical distributed ray tracing scenarios,

including the motion blur effect in dynamic scenes, as well as spectral ren-

dering. Experimental results demonstrate the effectiveness of our method in

these applications.

∗
Sheng Li is the corresponding author.

Authors’ addresses: Honghao Dong, Peking University, Beijing, China, donghonghao@

pku.edu.cn; Rui Su, Peking University, Beijing, China, susurui@pku.edu.cn; Guoping

Wang, Peking University, Beijing, China, wgp@pku.edu.cn; Sheng Li, Peking University,

Beijing, China, lisheng@pku.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

XXXX-XXXX/2024/11-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS Concepts: • Computing methodologies → Ray tracing; Neural
networks.

Additional Key Words and Phrases: Ray Tracing, Global Illumination, Path

Guiding, Neural Networks, Feature Decomposition

ACM Reference Format:
Honghao Dong, Rui Su, Guoping Wang, and Sheng Li. 2024. Efficient Neural

Path Guiding with 4D Modeling. 1, 1 (November 2024), 11 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Physically-based rendering requires Monte Carlo (MC) integration

to solve difficult numerical integration problems. To enhance the

efficiency of light transport simulation, path guiding collects the

sample statistics during rendering, and then uses them to fit a better

distribution for sample decisions (e.g., scattering direction sampling).

Tomodel the target distribution across different shading points, local

path guiding techniques typically store them into explicit 3D spatial

structures [Müller et al. 2017], and more recently, they have utilized

implicit neural representations [Dong et al. 2023; Huang et al. 2024;

Müller et al. 2019].

Path guiding techniques effectively reduce the variance for solv-

ing the rendering equation [Kajiya 1986], especially in complex

scenes with intricate visibility. However, some photorealistic render-

ing applications involve additional dimensions in the path integral,

e.g., distributed ray tracing. For example, motion blur rendering and

spectral rendering require integrating the additional time domain

T and the wavelength domain Λ in the path integral, respectively.

This also makes the zero-variance objective of path guiding even

, Vol. 1, No. 1, Article . Publication date: November 2024.

HTTPS://ORCID.ORG/0000-0001-7247-1301
HTTPS://ORCID.ORG/0009-0004-9331-0311
HTTPS://ORCID.ORG/0000-0001-7819-0076
HTTPS://ORCID.ORG/0000-0002-8901-2184
https://orcid.org/0000-0001-7247-1301
https://orcid.org/0009-0004-9331-0311
https://orcid.org/0000-0001-7819-0076
https://orcid.org/0000-0001-7819-0076
https://orcid.org/0000-0002-8901-2184
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Honghao Dong, Rui Su, Guoping Wang, and Sheng Li

harder to achieve, as the ideal target distribution now conditions

on extra variables from additional dimensions. In practice, previous

local path guiding generally neglects these cases [Vorba et al. 2019],

i.e., the learned target distribution is marginalized on these addi-

tional dimensions. In this work, we show that improvements could

be achieved when the correlation between the target distribution

and the additional dimensions is taken into consideration.

Directly modeling higher dimensionality is often impractical due

to the curse of dimensionality. In this work, we extend path guiding

algorithms by practically modeling the additional integral domains

in distributed ray tracing, taking a step closer towards the zero-

variance objective in these applications. We first extend the 3D

grid-based representations [Müller et al. 2022; Takikawa et al. 2023]

into high dimensional representation, then present a neural feature

decomposition approach to represent it with multiple low dimen-

sional representations for practical performance. We also present

a less costly variant that uses a low-dimensional representation

to model only a subspace of the high-dimensional representation.

Combined with our progressive training strategy, this approxima-

tion achieves similar sampling quality throughout the full rendering

process with less computational overhead. Finally, we validate the

effectiveness of our method under distributed rendering applica-

tions that involve extra integral domains, including motion blur for

dynamic scenes and spectral rendering.

Overall, our main contributions include:

• We extend the local path guiding to model the target dis-

tribution conditioned on 4D input spaces, and evaluate its

effectiveness on typical distributed ray-tracing applications.

• We propose to decompose the high-dimensional feature into

multiple lower-dimensional representations, providing prac-

tical means to model the target distributions conditioned on

additional dimensionalities.

• We present a cost-effective variant that uses reduced repre-

sentations to model only subspaces of the high-dimensional

correlations using a progressive training strategy.

2 RELATED WORK

Path Guiding. Path guiding techniques collect radiance samples

to construct better sampling distributions. Most guiding methods

learn the target distribution of local shading points, and fit them into

directional representations (e.g., directional trees or mixture models)

[Müller et al. 2017; Vorba et al. 2019, 2014]. They are then used to

sample the scattering directions during forward or bidirectional

path construction, namely the local guiding approaches. To account

for the spatial variations of the local target distributions, they are

generally stored in spatial acceleration structures, e.g., kd-tree and

octree.

Recently, a new trend of research leverages neural networks to

facilitate path guiding. Some works use deep learning to refine

the quality of conventional methods, e.g., using convolutional net-

works to reconstruct the noisy distribution within spatio-directional

trees. Another type of method directly encodes the target distribu-

tions using networks without involving explicit data structures. The

networks are shown to be capable of learning the full importance

sampling process [Müller et al. 2019; Zheng and Zwicker 2019],

or fitting the target distribution into explicit mixture models for

efficient sampling [Dong et al. 2023; Huang et al. 2024]. These ex-

plicit distributions provides attractive alternatives when lightweight

computation is in demand [Huang et al. 2024].

Some physically-based rendering applications require extra nested

integration on additional domains, e.g., motion blur and spectral ren-

dering. However, previous local guiding methods generally neglect

these effects, i.e., they learn the marginalized target distribution

over the extra domains [Vorba et al. 2019]. In this work, we extend

local guiding methods to model the additional integral domains and

demonstrate its benefits on typical rendering applications.

Neural Representation for Rendering. Recently, deep learning tech-
niques have been widely applied to facilitate rendering applications,

i.e., neural rendering. Among various research avenues, neural scene

representation focuses on encoding the scene with neural networks,

and has been gaining popularity after the success of neural radiance

fields (NeRF) [Mildenhall et al. 2020]. Neural scene representation

has also been applied to enhance ray-traced photorealistic rendering,

e.g., for efficient caching and querying of spatial radiance [Hadadan

et al. 2021; Müller et al. 2021], or encoding the target distribution

for path guiding [Dong et al. 2023; Huang et al. 2024].

Research has also found that input encoding is crucial for network

performance. Early methods use frequency encoding to project the

3D coordinate inputs to high dimensional space [Mildenhall et al.

2020]. More recent studies use grid-based representations to encode

the spatial features, which are stored in 3D grids or hash tables

[Müller et al. 2022; Takikawa et al. 2023] for efficient querying be-

fore feeding into the network. The trainable encoding technique

lessens the burden of the pure MLP methods, resulting in lower

computational cost by keeping the size of MLP sufficiently small

[Takikawa et al. 2023]. The spatial feature embedding technique has

later been extended to model dynamic scenes. Li et al. [2022] use

temporal feature embedding to network inputs, while Fridovich-Keil

et al. [2023] and Cao and Johnson [2023] model dynamic scenes

with 4D feature voxels. The 4D feature grids are decomposed into

multiple orthogonal feature grids/planes for practical computational

and storage overhead, namely the 𝑘-plane method. Inspired by these

works, we use feature decomposition to extend previous local guid-

ingmethods, so as tomodel the correlations of the target distribution

with additional dimensions beyond the 3D spatial coordinates.

3 PRELIMINARY

Monte Carlo Rendering. Light transport algorithms are generally

based on the rendering equation [Kajiya 1986]:

𝐿o
(
x, 𝜔o

)
= 𝐿e

(
x, 𝜔o

)
+
∫
Ω
𝑓s
(
x, 𝜔o, 𝜔i

)
𝐿i

(
x, 𝜔i

) ��
cos𝜃i

��
d𝜔i, (1)

which defines the relationship between the outgoing radiance 𝐿o,

emitted radiance 𝐿𝑒 , and the integrated incident radiance 𝐿i, at shad-

ing point x. Monte Carlo integration is used to obtain an estimate

of the reflection integral 𝐿𝑟 using an average of 𝑁 samples. In the

case where 𝑁 = 1:〈
𝐿r

(
x, 𝜔o

)〉
=
𝑓s
(
x, 𝜔o, 𝜔i

)
𝐿i

(
x, 𝜔i

) ��
cos𝜃i

��
𝑝 (𝜔i | x, 𝜔o)

, (2)

, Vol. 1, No. 1, Article . Publication date: November 2024.

Efficient Neural Path Guiding with 4D Modeling • 3

where ⟨𝐿r
(
x, 𝜔o

)
⟩ is an unbiased estimate of the outgoing radiance

𝐿r
(
x, 𝜔o

)
, and 𝜔𝑖 is the incident direction sampled with some di-

rectional probability distribution 𝑝 (𝜔i | x, 𝜔o). The variance of this
estimator 𝑉 [⟨𝐿r⟩] can be reduced if the sampling distribution 𝑝 re-

sembles the shape of the integrand, where zero-variance is achieved

when 𝑝 ∝ 𝑓𝑠 · 𝐿i cos𝜃𝑖 . Local path guiding algorithms approximate

the zero-variance goal by fitting a local sampling distribution for x
using previous radiance samples. Typically, they seek to learn the

incident radiance 𝐿i or the full integrand 𝑓𝑠 · 𝐿i cos𝜃𝑖 , which is used

to facilitate the construction of the path at each vertex.

Distributed Ray Tracing. Generally, the value of a pixel 𝐼px could
be obtained by integrating the outgoing radiance 𝐿o

(
x, 𝜔o

)
(Eq. 1)

from the visible surfaces to the pixel, where 𝐿o is conditioned on the

primary intersection x and the view direction 𝜔𝑜 . However, some

physically-based visual effects require additional integration on

other domains, which is often hard to approximate with a single path

sample. Typical examples include motion blur and spectral effects

(the so-called distributed effects [Cook et al. 1984]), which require

integration along time 𝑡 and wavelength 𝜆 domains, respectively.

This also makes the path integral have higher dimensionality, and

extra paths need to be sampled along the additional dimensions.

This also poses challenges to path guiding algorithms since the

zero-variance target distribution now depends on additional vari-

ables, a factor not commonly addressed in previous path guiding

research. In this work, we introduce a practical method to extend

path guiding algorithms to account for these effects and explore

the advantages of modeling the target distribution across these

additional domains.

Parametric Network Encoding. Trainable feature grid is a widely

used network encoding, and is found to be effective for augmenting

the capability of the MLP, while allowing it to be small for faster

inference [Takikawa et al. 2023]. Following the practices of previous

work [Dong et al. 2023; Hadadan et al. 2021], we also leverage

the feature-grid-based representation with multiple resolutions to

implicitly encode the guiding distributions. Taking the 3D case for

example, a feature grid consists of 𝐿 3D grids with different voxel

resolutions. For each grid 𝐺𝑙 of the 𝑙-th level, a trainable latent

embedding𝑦 ∈ R𝐹 is assigned to each of its grid point. To efficiently

query the encoded coordinate x, the features on the corners of the

voxel encapsulating x is linearly interpolated, and then aggregated

with other levels to get the final encoding 𝐺 (x):

𝐺 (x) =
𝐿⊕
𝑙=1

trilinear

(
x,𝑉𝑙 [x]

)
, (3)

where 𝑉𝑙 [x] is the set of features nearby x within the 𝑙-th grid 𝐺𝑙 ,

and 𝐺 : R3 → R𝐿×𝐹 is the parametric encoding function.

Neural Mixture Fields. Recent study found coordinate-based neu-

ral representation could be used to encode the spatial-varying target

distribution, thus facilitating path guiding by providing a more con-

tinuous neural spatial representation [Dong et al. 2023; Huang et al.

2024]. Specifically, they use lightweight MLPs and optionally a spa-

tial feature grid [Müller et al. 2022] to decode them into parametric

mixtures:

MLP
(
𝐺 (x | ΦE)

�� ΦM

)
= Θ̂(x), (4)

where Θ̂ is the parameter defining a vMF mixture, while ΦE and

ΦM are the parameters of the feature grids (Eq. 3) and the MLP,

respectively. The parameters could be optimized by minimizing the

learned distributionV and the target distribution D:

𝐷KL (D∥V;Θ) =
∫
Ω
D(𝜔) log D(𝜔)

V(𝜔 | Θ̂)
d𝜔, (5)

where D is defined by the network output Θ̂. Sparse estimates of

V can be obtained during the rendering process, which could then

be used to estimate the divergence (Eq. 5) with MC integration

and for efficient back-propagation on the fly. Concurrent research

also proposed a similar technique while proposing a new mixture

model to better account for anisotropy [Huang et al. 2024]. Com-

pared to the expressive implicit density modeling techniques (e.g.,

normalizing flow [Müller et al. 2019]), these explicit distributions

provides attractive alternatives when lightweight computation is in

demand [Huang et al. 2024]. In this work, we extend their method

to higher dimensionality, thereby modeling the correlation of the

target distribution over the extra domains.

4 METHOD

Based on the previous work [Dong et al. 2023; Huang et al. 2024],

our goal is to model the correlation of the local target distribution

on extra dimensionality, which is required to better approximate the

zero-variance goal in rendering distributed effects. More formally,

the ideal target distribution 𝑝 is now conditioned on variables u
from the extra domainsU:

𝑝 (𝜔i | x, 𝜔o, u) ∝ 𝑓s

(
x, 𝜔o,, 𝜔i, u

)
𝐿i

(
x, 𝜔i, u

) ��
cos𝜃i

�� , (6)

where u = {𝑢1, · · · , 𝑢𝑁 } is the parameterized vector consisting

of the variables, and 𝑢𝑖 could be shutter time 𝑡 for motion blur

rendering, or wavelength 𝜆 for spectral rendering, for examples.

It is non-trivial to extend the representation used in previouswork.

For the grid-based representation, modeling one extra dimension

needs about 2× querying overhead for interpolating nearby features

and 𝐷× storage cost (𝐷 is the resolution of the extra dimension). A

similar situation exists for the traditional explicit data structures,

where directly extending the kd-tree needs 𝐷× storage cost and

log𝐷× computational cost. Both are impractical for a resolution 𝐷

needed to model the fine-grained features within the new dimension.

In this section, we first propose decomposing the high-dimensional

grid-based neural representation into multiple low-dimensional fea-

ture grids, which have practical applicability to model the target

distribution for guiding distributed effects. We then show that in

certain scenarios where modeling the full parameter space is un-

necessary (e.g., offline rendering), low dimensional representations

could be used to model a subspace once at a time while combined

with progressive training to guide the full rendering process.

In our practice, we mainly focus on applications with one extra

integral domain (𝑁 = 1), which is sufficient for motion blur in dy-

namic scenes and spectral rendering. It is also possible to extend our

method to model a higher number of additional domains. However,

, Vol. 1, No. 1, Article . Publication date: November 2024.

4 • Honghao Dong, Rui Su, Guoping Wang, and Sheng Li

3D Spatial Grid 2D Feature Planes

⨁

Lighweight MLP

t1 t2

App. I: Motion Blur App. II: Spectral Rendering

t1 t2

Spatially Varying SPDs

Time-dependent Wavelength-dependent

Dynamic Scenes

Fig. 2. Schematic of our method. To model the target distributions within the 4D space {X,U}, we propose to decompose the high dimensional representation

into a 3D spatial grid 𝑔X (for modeling spatial-only features), as well as three 2D feature planes 𝑔XU . The queried features 𝑔 (x, u) from both representations

are then concatenated as input of the MLP, which is used to decode the parameterized guiding distribution conditioned Θ̂(x, u) on u. We show two typical

applications, including motion blur rendering for dynamic scenes, as well as spectral rendering. The target distribution is conditioned on time (𝑡) and

wavelength (𝜆) in two applications, respectively.

our experiments show that the computational cost often outweighs

the performance gains in most cases, as discussed later.

4.1 Neural Feature Decomposition

We first focus on extending modeling one extra integral domain re-

quired by the distributed effects by extending the 3D grid-based rep-

resentation used in previous methods [Dong et al. 2023]. A straight-

forward extension would be using a 4D grid, which would result in

impractical computational and storage costs. Inspired by the feature

decomposition technique initiated by NeRF applications [Fridovich-

Keil et al. 2023], we use additional low-dimensional feature grids to

model the correlations introduced by the extra dimensions, while let-

ting the original 3D feature grid focus on modeling the spatial-only

features decoupled from extra dimensions. Specifically, we decom-

pose the high dimensional grid into two orthogonal components

with low dimensional representations:

• A 3D feature grid 𝑔X for modeling spatial features decoupled

from the extra domains.

• Three 2D feature planes 𝑔XU for modeling the correlation

between the extra domains and the spatial coordinates.

where we formulate each component respectively as:

𝑔X (x) = 𝐺 (𝑥,𝑦, 𝑧)
𝑔XU (x, u) = 𝑃𝑋𝑈 (𝑥,𝑢) ⊕ 𝑃𝑌𝑈 (𝑦,𝑢) ⊕ 𝑃𝑍𝑈 (𝑧,𝑢), (7)

where x denotes the 3D spatial coordinates and u denotes the vari-

able from extra dimensions, both normalized to [0, 1] ranges.𝐺 (·, ·, ·)
is the 3D grid for modeling decoupled spatial features, while 𝑃 (·, ·) is
the 2D grid for modeling the correlations between the extra variable

𝑢 and the spatial coordinates x. ⊕ is the aggregation operator for

feature reduction between different feature planes, where we found

simple concatenations perform sufficiently well in our experiments.

The features are then concatenated together to obtain the final en-

coding 𝑔(x, u) as the input of the decoder MLP, which predicts the

target distribution Θ̂(x, u) conditioned on u (Eq. 4):

𝑔(x, u) = 𝑔X (x) ⊕ 𝑔XU (x, u) . (8)

Discussion. We introduce a practical grid-based representation for

encoding correlations within a 4D scene space. While it is possible

to extend this approach to model additional domains beyond the

4D space by introducing extra 2D feature planes, 𝑔U (u), to cap-

ture correlations between different variables 𝑢𝑖 from other domains,

we found that the additional computational cost often outweighs

the quality gains when modeling more than two extra dimensions.

Therefore, in this work, we focus on modeling just one extra dimen-

sion 𝑁 = 1, which is sufficient to guide distributed effects.

Using a 2D plane decomposition strategy (as used in K-planes

[Fridovich-Keil et al. 2023]) to encode spatial features could be an

alternative. However, considering that spatial correlations are more

crucial to overall reconstruction quality compared to correlations

from additional dimensions, employing a 3D grid 𝑔X is more practi-

cally effective.

4.2 Progressive Training Scheme

For typical applications in rendering distributed effects, a key obser-

vation is that the target distribution 𝑝 (𝜔i | x, 𝜔o, u) only partially
changes if the extra variables u is perturbed. Intuitively, if a neural

representation Φ1 is trained to encode the target distribution 𝑝u1 at
u1, then the learning target 𝑝u2 at u2 should be similar to 𝑝u1 . By
leveraging Φ1 as the initial weights, we can use transfer learning to

efficiently fine-tune the network to the new stateΦ2 with potentially

few training samples.

To further exploit the correlations of 𝑝u between neighboring

u, we reorganize both the rendering and the training process in a

progressive manner along the extra dimension. Specifically, we use

stratified sampling to solve the integral of the extra dimensionU,

thus allowing splitting the rendering process by subdividing the

domain into𝑀 small strata [𝑢𝑖 , 𝑢𝑖+1]. During rendering the current

stratum, only the target distribution within this interval is modeled.

By assuming the target distribution 𝑝u have no drastic changes in

[𝑢𝑖 , 𝑢𝑖+1], we do not use grid-based representation to model the

variation of 𝑝u1 . More formally, we disable 𝑔XU (x, u) (Eq. 7), while
letting 𝑔X (x) to model the marginalized target distribution over the

small interval [𝑢𝑖 , 𝑢𝑖+1]:

𝑝u𝑖 (𝜔i | x, 𝜔o) ∝
∫ u𝑖+1

u𝑖
𝑓s

(
x, 𝜔o,, 𝜔i, u

)
𝐿i

(
x, 𝜔i, u

) ��
cos𝜃i

��
d𝑢,

(9)

, Vol. 1, No. 1, Article . Publication date: November 2024.

Efficient Neural Path Guiding with 4D Modeling • 5

where |𝑢𝑖 − 𝑢𝑖+1 | is designed to be small. By assuming no high-

frequency changes within an individual stratum, we only provide u
as auxiliary network inputs to model the effect of u on the target

distribution, rather than using the grid-based representation, as

discussed in Sec. 4.1.

We combine the above strategy for modeling the target distri-

bution in individual strata with progressive training to achieve

guidance for the full rendering process. Specifically, we iteratively

render each stratum. At the beginning of each stratum, we use a

fixed amount of samples to fine-tune the network, where the sam-

ples are generated on the fly during rendering the current stratum.

We let the first 𝐾 strata be the burn-in phase, where a larger amount

of samples are used for training, as illustrated in Fig. 3.

Discussion. We introduce a progressive training approach that

guides the full rendering process using a more compact representa-

tion than the method described in Sec. 4.1, yet achieves comparable

sampling quality. This essentially exploits the fast-adaption intrinsic

of the neural representation, which the traditional tree-like struc-

tures struggle to achieve. However, this method also brings higher

training cost while limiting the applicability to where the whole

scene space {X,U} needs to be modeled, e.g., for interactive ren-

dering and fast previewing, which will also be discussed later.

We also note that it is straightforward to combine this rendering

scheme with adaptive sampling techniques in the extra domains

[Hachisuka et al. 2008; West et al. 2020]. Intuitively, this reduces the

variance of the nested integral, while alleviating the burden of the

network by allocating more samples to the important subspaces.

4.3 Optimization

We aim to efficiently train our neural representation in an online

manner. Training strategies for density estimation using neural

networks have been studied in previous work [Dong et al. 2023;

Huang et al. 2024; Müller et al. 2019], and are shown to have faster

convergence than explicit structures [Dong et al. 2023], e.g., direc-

tional trees [Müller et al. 2017]. We adopt a similar optimization

technique by estimating the K-L divergence, but extend the training

objective to additional dimensions expanded by u (u is 1D in our

t2t1

⨁

Previous Stratum Current Stratum Optimize Divergence

Outputs

Gradients
Weight
 Reuse

Fig. 3. Illustration of our progressive training method using motion blur

as an example. We use stratified sampling to sample paths along the time

dimension. To handle the dynamic changes of geometry and lighting, we

reuse the network weights of the previous stratum, and exploit newly gen-

erated samples to fine-tune the network after the stratum is switched.

main experiments). Specifically, for given shading position x and

the extra scene variable u, we use MC integration to optimize the

directional guiding distributionV predicted by the network:

∇Θ𝐷KL (D∥V;Θ) ≈ − 1

𝑁

𝑁∑︁
𝑗=1

D(𝜔 𝑗)∇ΘV(𝜔 𝑗 | Θ̂)
𝑝 (𝜔 𝑗 | Θ̂)V(𝜔 𝑗 | Θ̂)

, (10)

where V is defined by the network output parameters Θ̂, and is

conditioned on (x, u), and other inputs and network parameters Φ.
We exploit the samples generated on-the-fly for network opti-

mization. When learning the full space of distribution (Sec. 4.1),

the network’s loss is defined by the integrated divergence over the

surface S and the space expanded by the extra dimensionsU:

L(Φ) =
∫
U

∫
S
𝑝𝑋𝑈 (x, u)∇Φ𝐷KL (D∥V; Θ̂(x, u)) dx du, (11)

where 𝑝𝑋𝑈 is the unknown joint PDF of the samples over {S,U}.
As for the case where only a subspace of U is modeled within

a small stratum (Sec. 4.2), we adapt transfer-learning to reuse the

trained network parameters Φ from the last stratum by assuming

that the target distributions only have slight changes for similar u
in neighboring strata, as shown in Fig. 3.

5 IMPLEMENTATION

We implemented our feature decomposition method (Sec. 4.1), as

well as the progressive training and stratified scheme (Sec 4.2) upon

neural parametric mixtures [Dong et al. 2023] on a GPU renderer

using CUDA and OptiX [Parker et al. 2010].

Network Architecture. We use a similar network architecture as

used in neural parametric mixtures (NPM), while implementing the

feature decomposition by modifying the tiny-cuda-nn framework

[Müller 2021]. We use an MLP with 3 linear layers and 64 neurons,

with ReLU activation after each layer. The last layer has a width of

32 and is mapped to 8 vMF components using the custom mapping

as described in [Dong et al. 2023]. For the 3D grid 𝑔X (x) modeling

decoupled spatial features, we use a multi-resolution grid 𝐺 (·, ·, ·)
with 8 levels, where the coarsest resolution is 8 with a growth factor

of 1.4× at each level. For 2D grids 𝑔XU (x, u) modeling correlations

with extra dimensions (Sec. 4.1), we make each feature plane 𝑃 (·, ·)
consisting of 8 levels, with the coarsest resolution at 8 and the

growth factor set to 2×. The 3D grid 𝐺 and the 2D plane 𝑃 have a

latent vector of length 𝐹 = 4 and 𝐹 = 2 at each of their grid points

per level, respectively.

Training and Rendering. We leverage a similar training scheme as

[Dong et al. 2023], where training and inference are interleaved at

each frame. For the variant that models the full 4D correlation (Sec.

4.1), we use the first 35% of the sample count for training, where

each frame is trained for n_batches = 4 steps with batch_size =

2
18

samples. As for the low dimensional variant with progressive

training (Sec. 4.2), we only train n_batches = 2 steps per frame

with the same batch_size. Due to the reduced total sample count,

we only gather samples from 50% of the paths that we randomly

chose. During rendering each frame, we collect the radiance samples

along the vertices of each path parallelly and gather them into a

queue with a maximum size of n_batches×batch_size. Additional

, Vol. 1, No. 1, Article . Publication date: November 2024.

6 • Honghao Dong, Rui Su, Guoping Wang, and Sheng Li

samples that exceed the queue size are discarded for less memory

traffic. Both variants are optimized with Adam [Kingma and Ba

2015] with a 0.008 learning rate. The exponential moving average

(EMA) strategy is further applied to network weights with a decay

rate of 0.95 and 0.9 for the two variants, respectively. We also note

that the training samples with zero target value D could be culled

to accelerate training, as they have zero derivatives (Eq. 10) and

thus not contribute to the gradient accumulation process. While we

did not include this specific optimization in current implementation,

it is expected to provide efficiency gains in complex scenes where

many light paths have zero contribution and could be culled.

MIS Integration. Experimentally, the learned mixtures struggle

to fit the case where the BSDF lobe is extremely sharp (e.g., when

roughness is very small). Following previous practices of guiding

methods [Müller et al. 2017; Ruppert et al. 2020], we combine our

sampling technique with a defensive strategy using multiple im-

portance sampling (MIS) [Veach 1998]. Specifically, we randomly

choose to sample from the network predicted mixtures or BSDF with

a fixed ratio of 𝜆𝐵 = 0.5, and do not perform guiding for specular

surfaces. In practice, we also apply MIS compensation [Karlík et al.

2019] to the target distribution, as proposed by Rath et al. [2020].

This allows the network to learn effects that are not handled well

by BSDF sampling. Specifically, the target distribution becomes:

𝑝g (𝜔i | x, 𝜔o, u) ∝ 𝑤g 𝑓s

(
x, 𝜔o,, 𝜔i, u

)
𝐿i

(
x, 𝜔i, u

) ��
cos𝜃i

�� , (12)

where𝑤g =
(1−𝜆𝐵)𝑝g

(1−𝜆𝐵)𝑝g+𝜆𝐵𝑝𝐵 is theMISweight of the guiding distribu-

tion. The same strategy is also applied to NPM for fair comparisons.

6 EXPERIMENTS AND RESULTS

We compare our method with Practical Path Guiding (PPG) [Müller

et al. 2017] and Neural Parametric Mixtures (NPM) [Dong et al.

2023]. All the compared methods are implemented on GPU, where

we use the implementation of NPM from authors, and port the CPU

implementation of PPG to CUDA. For simplicity of comparisons, we

let the guiding methods learn the incident radiance 𝑝 ∝ 𝐿i, i.e., we
disable the learnable selection probability of PPG, while disabling

the product distribution learning for NPM. We do not use pixel

weighting schemes for all the guiding methods. We render the test

scenes at 1280 × 720, and report the mean relative squared error

(RelMSE) for each method. We limit the maximum path length to

10 and disabled Russian roulette and NEE for all scenes following

prior practices [Dodik et al. 2022; Müller et al. 2019]. We use spectral

rendering for all experiments and enabled HeroMIS [Wilkie et al.

2014] (simultaneously evaluating 4 wavelengths per path), although

the heavy use of dispersive materials (i.e., BSDFs with wavelength-

dependent IoR) in our spectral test scenes often makes it ineffective.

Both training and rendering are performed on a single RTX4070

Laptop (8GB) GPU, or an RTX 4080S GPU if otherwise mentioned.

6.1 Rendering Distributed Effects

We compare the performance of our method with previous guiding

methods in typical distributed ray-tracing applications including

motion blur and spectral rendering, as these effects require the target

distribution changes correlated with other dimensions. For other

Table 1. Equal-time comparisons of our method against previous guiding

methods. For each scene, we report the RelMSE metric and the sample

count of each method. Our method produces lower errors in most scenes.

Scene / RMSE PT NPM[2023] Ours(4D) Ours(Prog.)

Living-Room

0.1896 • 0.0469 • 0.0347 • 0.0311 •
3220 spp 1910 spp 1420 spp 1500 spp

Tower

0.1338 • 0.0704 • 0.0696 • 0.0359 •
3540 spp 1790 spp 1400 spp 1500 spp

Veach-Egg

1.2370 • 0.3979 • 0.3408 • 0.3466 •
7430 spp 1910 spp 1470 spp 1500 spp

Interior

0.5296 • 0.3905 • 0.4239 • 0.3105 •
4180 spp 1940 spp 1380 spp 1500 spp

Liquids

0.2170 • 0.2679 • 0.2319 • 0.2054 •
4310 spp 1850 spp 1360 spp 1500 spp

distributed effects like depth of field (DoF) and soft shadows, the

local target distribution (Eq. 6) does not change along extra integral

domains, and thus is sufficient to model with 3D representations, as

used in previous local guiding methods [Müller et al. 2017].

Motion Blur. Motion blur is a typical distributed effect involving

dynamic scenes. This requires the path integral with an extra di-

mension of time 𝑡 , where the local target distribution (Eq. 6) is easy

to change drastically due to dynamic lighting, materials, geometry

visibility, etc. Oftentimes, it is inefficient to learn a marginalized

local radiance distribution over 𝑡 , which fails to capture transient

effects that occur within a short time interval.

We let our method learn a local target distribution 𝑝g (𝜔i | x, 𝑡)
that is additionally conditioned on time. In Figure 5, we compare

our method with previous guiding methods, where the target dis-

tribution is only conditioned on 3D spatial coordinates x. In the

Tower scene, we use rigid body physics to simulate the process of

an object crushing onto a tower of cubes. The moving cube with

emissive material is the major illuminant in the scene, resulting

in drastic changes in light visibility and, thus, highly correlated

target distribution with time. For the Room scene, we make the

perimeter of the room rotate, leading to changing lighting includ-

ing the occluded lamp and the incident radiance from the envi-

ronment. By additionally modeling the correlation over time, our

methods increase the probability of finding high-contribution paths

at different time points. The progressive training variant of our

method (Ours-Progressive) successfully adapts to new time strata

by reusing the weights from the previous time point using trans-

fer learning, achieving a reasonable computational cost by using a

reduced grid-based representation than Ours-4D.
We further visualize the animated scene and the learned target dis-

tribution in Fig. 7. For each scene, we show the distribution predicted

by NPM and Ours(4D), respectively. NPM learns a marginalized dis-

tribution over temporal scene changes, which tends to be blurry. On

the other hand, our method produces time-dependent distributions

that are more fine-grained and accurate among different time points.

Spectral Rendering. Spectral rendering extends the path integral

over the wavelength domain Λ, thereby achieving more physically

accurate light-scene interaction. Multiple causes in spectral scenes

, Vol. 1, No. 1, Article . Publication date: November 2024.

Efficient Neural Path Guiding with 4D Modeling • 7

result in the target distribution being correlated with the wavelength

𝜆, e.g., (1) wavelength-dependent BSDFs (e.g., dispersive dielectrics);

(2) non-constant spectra of the texture reflectance; and (3) colored

lights with different spectral power distributions (SPDs). Previous

guiding methods generally omit this correlation by learning the

marginalized (averaged) distribution 𝑝g over Λ for shading points x:

𝑝g (𝜔i | x, 𝜔o) ∝
∫
Λ
𝑓s

(
x, 𝜔o,, 𝜔i, 𝜆

)
𝐿i

(
x, 𝜔i, 𝜆

) ��
cos𝜃i

��
d𝜆. (13)

We show the benefits of our method by learning a 𝜆-dependent

target distribution. In our experiments, we use the CIE 1931 stan-

dard response curve to convert the spectrally rendered results into

the sRGB color space for visualization and comparisons. For the

non-spectral data (e.g., the RGB reflectance), we up-sample them

into smooth spectra at runtime using the technique of [Jakob and

Hanika 2019]. We show two spectrally rendered test scenes in Fig. 6.

In the Interior scene, we lit a complex indoor scene with colored

lights using different SPDs. All windows are equipped with slightly

dispersive glass surfaces for light to pass through. In the Liqids

scene, we show multiple emissive liquids modeled using homoge-

neous media with different albedo 𝜎a. The scene is further lit by a

ceiling light with spatially varying SPDs. All the illuminants in this

scene are enclosed in glass containers with wavelength-dependent

IoR, thus preventing both NEE and HeroMIS from being effective.

For both scenes, the local target distribution is conditioned on 𝜆,

caused by wavelength-dependent lighting and materials. We show

our method produces better results for modeling these 𝜆-dependent

effects, thus resulting in noticeably less color noise.

Discussion. As shown in the experimental results, applying our

method to spectral rendering yields a smaller relative improvement

compared to previous guiding methods than in the case of motion

blur rendering (see Fig. 5). We believe this could be attributed to the

relatively smooth spectral power distribution (SPD)we used formost

emitters, as well as the reflectance spectra of the textures (upsampled

from RGB in the test scenes). These spectra are typically smooth and

energy-conserving [Jakob and Hanika 2019], resulting in a weaker

correlation between 𝑝g and 𝜆. Moreover, orthogonal spectral MIS

methods like HeroMIS [Wilkie et al. 2014] could also weaken the

correlation when it being sufficiently effective (the contribution

from multiple different wavelengths are simultaneously considered),

thereby making our method less beneficial. Consequently, learning a

𝜆-dependent distribution often offers less significant improvements

compared to using a marginalized distribution (Eq. 13) as it does in

dynamic scenes.

6.2 Evaluations

Alternatives for Modeling Correlation. We also investigate the ef-

fectiveness of other alternatives for modeling additional dependen-

cies on the variable u using neural networks, including (a) directly

inputting the conditional variable into the network, and (b) using 4D

grid-based representations, as is also discussed in Sec. 4. For these

alternatives, we explored different setup on their hyper-parameters

and chose the generally well behaved ones. In Fig. 4, we compare our

method (Ours-4D) against these two variants (4D+Hash and 3D+Aux,
respectively). Specifically, for the 3D+Aux method, we encode the

Li
vi

ng
-R

oo
m

0.0816 0.0503 0.0364

0.051 (1.36x) 0.044 (1.58x) 0.039 (1.78x)

To
w

er 0.126 0.1027 0.0902

0.052 (1.74x) 0.044 (2.06x) 0.041 (2.21x)

97s 105s 103s

112s 122s 117s

Li
qu

id
s

0.1409 0.1593 0.1375

0.201 (1.65x) 0.204 (1.63x) 0.192 (1.72x)

3D+Aux. 4D+Hash Ours(4D)

78s 86s 86s

Fig. 4. Comparing different alternatives for modeling 4D correlations on a

subset of scenes. The experiments are conducted on an RTX 4080S. We also

report the render times and the multipliers of equal-sample error (relMSE)

reduction of each method compared to NPM.

auxiliary input u using frequency encoding [Mildenhall et al. 2020]

with 16 frequency levels; while for the 4D+Hash method, we use

the 4D multi-resolution grids with hash tables [Müller et al. 2022]

(using the same resolution as our spatial grid but limiting the hash

map size to 2
22
) to avoid the impractical computational and memory

cost of a full 4D grid. The parametric feature-grid-based methods

generally achieves slightly better reconstruction quality, while has

more computation overhead. Therefore, in simple scenarios (e.g.,

meshes only slightly moves or in spectral rendering scenes), simpler

encoding approaches like frequency encoding (3D+Aux) might be

feasible while maintaining performance efficient.

Performance Analysis. While our method achieves better sam-

pling quality by modeling 4D correlations, it also introduces extra

computational overhead. Therefore, we also present the equal-time

results of the test scenes in Tab. 1. Generally, we find the two vari-

ants of our methods yield similar sampling quality at equal sample

rates, while Ours-4D often has better efficiency for not using 𝑔XU
to model the correlations between x and u. Both variants of our

methods outperform other methods in most scenes. We present the

detailed performance breakdown in Tab. 2, where we also show the

memory footprint and the inference time of 1280 × 720 pixels per

frame. Our method outperforms NPM at a reasonable memory over-

head for modeling the u-dependent guiding distributions. We also

evaluate the performance of different resolutions of 𝑔XU (denoted

with mini and large).

Rendering Animated Sequences. Lastly, we validate the effective-
ness of our 4D representation by rendering an animated scene with

varying lighting and geometry, which is a direct application of our

method. We pretrain our method (Ours-4D) and NPM for 30s, then

render the animated frames without further training. We show the

, Vol. 1, No. 1, Article . Publication date: November 2024.

8 • Honghao Dong, Rui Su, Guoping Wang, and Sheng Li

Table 2. Performance breakdown of NPM and the different variants of our

method. The statistics are acquired with an equal-time (97s) comparison

performed on the Living-Room scene on an RTX 4080S.

Method

Encoding size

𝑔X + 𝑔XU

Training

per step

Inference

per frame

RelMSE

NPM 34.9 MB 3.3ms 10.8ms 0.0547

Ours(4D)
mini

37.2+16.4 MB 9.0ms 15.3ms 0.0433

Ours(4D)
base

37.2+30.2 MB 9.3ms 15.4ms 0.0422

Ours(4D)
large

37.2+48.5 MB 9.3ms 15.9ms 0.0441

3D+Aux. 34.9 MB 5.6ms 16.6ms 0.0493

4D+Hash 89.8 MB 9.7ms 19.2ms 0.0538

Ours(Prog.) 37.2 MB 5.1ms 11.0ms 0.0366

results of two random frames in Fig. 9. Our method reduces the

noise for modeling time-dependent target distribution, while NPM

learns an averaged distribution over time, leading to inaccuracies

with respect to specific time points.

6.3 Discussion and Limitations

Alternative Solutions. In this work, we augment path guiding

methods by modeling the local target distribution with additional

integral domains, which benefits the distributed ray-tracing appli-

cations and is often neglected by previous work. However, there

also exist other methods that facilitate rendering distributed effects,

which are orthogonal to our method. For example, primary sample

space (PSS) techniques [Crespo et al. 2021; Guo et al. 2018] can often

be directly extended to model the extra domains. However, these

methods often suffer from the curse of dimensionality, while having

difficulty in scaling to arbitrary path lengths [Zheng and Zwicker

2019]. Another direction is to adaptively importance sample the

extra domains [Hachisuka et al. 2008; West et al. 2020], which could

be combined with our method directly, as also discussed in Sec. 4.2.

It is also possible to extend explicit subdivision data structures to

model extra dimensionality. For example, PPG [Müller et al. 2017]

can be expanded by nesting an extra binary tree over the directional

trees, or by replacing the 3D spatial tree with a 4D K-D tree. How-

ever, our pilot test revealed that both designs result in a drastically

increased demand of training budget, as far fewer samples fall into

the subdivisions. This renders them less effective for the current task

setup. Further efforts are needed to address the sparsity of training

samples and the curse of dimensionality in explicit 4D structures.

Limitations. Ourmethod achieves better sampling quality bymod-

eling one extra domain for target distribution learning while with a

notable computational overhead. However, since the performance

gain of our method partially depends on how strongly the target

distribution is correlated to the variates u from the extra domainsU,

our method might fall short of previous guiding methods, or simpler

parametric encodingmethods (like frequency encoding) in relatively

simple scenes (e.g., motion blur within a very short time period,

and/or with few geometry/lighting changes). Thereby, we believe

the best use of our method is to augment the path construction in

non-trivial scenes featuring intricate distributed effects.

Another limitation resides in the scalability of the number of ex-

tra domains. Although our method theoretically applies to a higher

number (> 1) of dimensions (discussed in Sec. 4.1), we experimen-

tally found that the performance benefit hardly justifies its addi-

tional computational cost in most cases. Unfortunately, this makes

our method best used for guiding individual distributed effects (e.g.,

either motion blur or spectral rendering). We leave the practical

simultaneous guiding of multiple distributed effects for future work.

7 CONCLUSION AND FUTURE WORK

In this work, we extend previous local path guiding techniques

based on neural mixture fields [Dong et al. 2023; Huang et al. 2024],

and investigate the benefits of modeling more accurate target dis-

tributions that are conditioned on additional integral domains. We

introduce several 4D modeling approaches specifically designed to

condition the target distribution on additional integral domains,

thereby enhancing path guiding algorithms for distributed ray trac-

ing applications. Our focus is on exploiting the continuity and com-

pactness of coordinate-based neural representations, as well as the

mechanisms of high-dimensional representation and the strategy of

lower-dimensional neural decomposition. We conduct experiments

and explorations, while showing that our method can benefit those

typical applications of distributed ray-tracing rendering. We con-

jecture that our approaches could also be applied to other types of

importance sampling networks (e.g., normalizing-flow-based neu-

ral importance sampling [Müller et al. 2019]) for potentially better

expressiveness, and we leave this as a future work.

In future work, we would like to investigate practical means to

scale our method to multiple additional domains, which could bene-

fit complex cases that simultaneously feature multiple distributed ef-

fects. Another interesting direction could be combining our method

with adaptive sampling techniques in the extra dimensions (e.g., the

adaptive stratified sample pattern used in West et al. [2020]). Last

but not least, we note that our current study is limited to effectively

conditioning the target distribution on 4D domains to facilitate neu-

ral path guiding techniques. Developing a practical learning and

adaptive sampling method for general 4D distributions remains a

more challenging and anticipated area of research, with the potential

to benefit a broader range of applications.

ACKNOWLEDGMENTS

This project was supported by the National Key R&D Program of

China (No.2023YFF0905103), NSFC of China (No. 62172013), and the

Foundation of Shuanghu laboratory (Grant No.SH-2024JK03). The

authors wanted to thank the creators for the test scenes: Blendswap

user Jay-Artist [2012] (Living Room), Sketchfab user iansed [2018]

(Interior), and Benedict Bitterli [2016] (Veach-Egg).

REFERENCES

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

Ang Cao and Justin Johnson. 2023. Hexplane: A fast representation for dynamic scenes.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
130–141.

Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed ray trac-

ing (SIGGRAPH ’84). Association for Computing Machinery, New York, NY, USA,

137–145.

, Vol. 1, No. 1, Article . Publication date: November 2024.

Efficient Neural Path Guiding with 4D Modeling • 9

Miguel Crespo, Adrian Jarabo, and Adolfo Muñoz. 2021. Primary-space adaptive control

variates using piecewise-polynomial approximations. ACM Transactions on Graphics
(TOG) 40, 3 (2021), 1–15.

Ana Dodik, Marios Papas, Cengiz Öztireli, and Thomas Müller. 2022. Path Guiding

Using Spatio-Directional Mixture Models. In Computer Graphics Forum, Vol. 41.

Wiley Online Library, 172–189.

Honghao Dong, Guoping Wang, and Sheng Li. 2023. Neural Parametric Mixtures for

Path Guiding. In ACM SIGGRAPH 2023 Conference Proceedings. 1–10.
Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht,

and Angjoo Kanazawa. 2023. K-planes: Explicit radiance fields in space, time, and

appearance. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 12479–12488.

Jerry Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary Sample

Space Path Guiding. In Eurographics Symposium on Rendering - EI & I, Wenzel Jakob

and Toshiya Hachisuka (Eds.). Eurographics, The Eurographics Association, 73–82.

http://graphics.tudelft.nl/Publications-new/2018/GBBE18 doi: 10.2312/sre.20181174.

Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg

Humphreys, Matthias Zwicker, and Henrik Wann Jensen. 2008. Multidimensional

adaptive sampling and reconstruction for ray tracing. In ACM SIGGRAPH 2008
papers. 1–10.

Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. 2021. Neural radiosity. ACM
Transactions on Graphics (TOG) 40, 6 (2021), 1–11.

Jiawei Huang, Akito Iizuka, Hajime Tanaka, Taku Komura, and Yoshifumi Kitamura.

2024. Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians.

ACM Trans. Graph. 43, 3, Article 26 (apr 2024), 18 pages.
iansed. 2018. The Big Bang Theory Apartment. https://skfb.ly/6wwtG This work is

licensed under CC-BY-4.0 (https://creativecommons.org/licenses/by/4.0/).

Wenzel Jakob and Johannes Hanika. 2019. A Low-Dimensional Function Space for Effi-

cient Spectral Upsampling. Computer Graphics Forum (Proceedings of Eurographics)
38, 2 (March 2019).

Jay-Artist. 2012. The White Room Cycles. https://blendswap.com/blend/5014 This

work is licensed under CC-BY-3.0 (https://creativecommons.org/licenses/by/3.0/).

James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. (1986).
Ondřej Karlík, Martin Šik, Petr Vévoda, Tomáš Skřivan, and Jaroslav Křivánek. 2019. MIS

Compensation: Optimizing Sampling Techniques in Multiple Importance Sampling.

ACM Trans. Graph. (SIGGRAPH Asia 2019) 38, 6 (2019), 12 pages. https://doi.org/10.

1145/3355089.3356565

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

ICLR (2015).

Tianye Li, Mira Slavcheva, Michael Zollhoefer, SimonGreen, Christoph Lassner, Changil

Kim, Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al.

2022. Neural 3d video synthesis frommulti-view video. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 5521–5531.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields

for View Synthesis. In ECCV.
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages.

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical path guiding for efficient

light-transport simulation. In Computer Graphics Forum, Vol. 36. Wiley Online

Library, 91–100.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.

2019. Neural importance sampling. ACM Transactions on Graphics (TOG) 38, 5
(2019), 1–19.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-Time

Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4, Article 36
(2021), 16 pages.

Thomas Müller. 2021. tiny-cuda-nn. https://github.com/NVlabs/tiny-cuda-nn

Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,

David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,

et al. 2010. Optix: a general purpose ray tracing engine. ACM Transactions on
Graphics (TOG) 29, 4 (2010), 1–13.

Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek,

and Jaroslav Křivánek. 2020. Variance-aware path guiding. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 151–1.

Lukas Ruppert, Sebastian Herholz, and Hendrik PA Lensch. 2020. Robust fitting of

parallax-aware mixtures for path guiding. ACM Transactions on Graphics (TOG) 39,
4 (2020), 147–1.

Towaki Takikawa, Thomas Müller, Merlin Nimier-David, Alex Evans, Sanja Fidler, Alec

Jacobson, and Alexander Keller. 2023. Compact Neural Graphics Primitives with

Learned Hash Probing. In SIGGRAPH Asia 2023 Conference Papers. 1–10.
Eric Veach. 1998. Robust Monte Carlo methods for light transport simulation. Stanford

University.

Jiří Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and

Alexander Keller. 2019. Path Guiding in Production. In ACM SIGGRAPH 2019 Courses

(Los Angeles, California) (SIGGRAPH ’19). ACM, New York, NY, USA, Article 18,

77 pages.

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.

On-line learning of parametric mixture models for light transport simulation. ACM
Transactions on Graphics (TOG) 33, 4 (2014), 1–11.

Rex West, Iliyan Georgiev, Adrien Gruson, and Toshiya Hachisuka. 2020. Continuous

Multiple Importance Sampling. ACM Transactions on Graphics (TOG) 39, 4 (2020),
136–1.

A. Wilkie, S. Nawaz, M. Droske, A. Weidlich, and J. Hanika. 2014. Hero Wavelength

Spectral Sampling. Computer Graphics Forum 33, 4 (2014), 123–131. https://doi.org/

10.1111/cgf.12419

Quan Zheng and Matthias Zwicker. 2019. Learning to Importance Sample in Primary

Sample Space. Computer Graphics Forum 38, 2 (2019), 169–179. https://doi.org/10.

1111/cgf.13628

, Vol. 1, No. 1, Article . Publication date: November 2024.

http://graphics.tudelft.nl/Publications-new/2018/GBBE18
https://skfb.ly/6wwtG
https://blendswap.com/blend/5014
https://doi.org/10.1145/3355089.3356565
https://doi.org/10.1145/3355089.3356565
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1111/cgf.12419
https://doi.org/10.1111/cgf.12419
https://doi.org/10.1111/cgf.13628
https://doi.org/10.1111/cgf.13628

10 • Honghao Dong, Rui Su, Guoping Wang, and Sheng Li
To

w
er 0.1945 0.2293 0.1531 0.0765 relMSE

0.2188 0.2591 0.1176 0.0706 relMSE

PPG NPM Ours (4D) Ours (Progressive) Reference

0.0953 (192s) 0.0907 (214s) 0.0515 (275s) 0.0373 (249s) relMSE/Time(s)

Li
vi

ng
-R

oo
m

0.3701 0.075 0.0381 0.0409 relMSE

0.6235 0.0907 0.0428 0.0425 relMSE
0.2951 (190s) 0.0697 (210s) 0.0373 (261s) 0.0359 (233s) relMSE/Time(s)

Ve
ac

h-
Eg

g

0.5448 0.7871 0.6441 0.616 relMSE

1.0845 0.9389 0.6797 0.5254 relMSE
0.4937 (88s) 0.4019 (101s) 0.2979 (153s) 0.3028 (125s) relMSE/Time(s)

Fig. 5. Visual comparisons of rendering motion blur effects on dynamic test scenes. All images are rendered at 1280 × 720 using 1500 spp, while we also

provide the equal-time comparisons in Tab. 1. Details about the scene animation and the rendering process can be inspected in our supplementary video.

In
te

ri
or 1.0277 0.545 0.5073 0.4011 relMSE

0.8244 0.3121 0.2154 0.1959 relMSE
0.9266 (133s) 0.5039 (147s) 0.4014 (209s) 0.3394 (181s) relMSE/Time(s)

Li
qu

id
s

0.2926 0.227 0.1318 0.1403 relMSE

0.4338 0.3393 0.2108 0.2326 relMSE
0.4222 (125s) 0.3339 (137s) 0.2027 (200s) 0.2108 (166s) relMSE/Time(s)

Fig. 6. Visualization of spectral rendering results on two test scenes using the same experimental setup as Fig. 5. Both test scenes contain colored lights with

spatially varying SPDs and dispersive dielectric materials. Our method reduces the color noise compared to the alternative guiding methods.

, Vol. 1, No. 1, Article . Publication date: November 2024.

Efficient Neural Path Guiding with 4D Modeling • 11

NPM Ours (t1) Ours (t2)

Living Room

t = 0.1s t = 1.0s

NPM Ours (t1) Ours (t2)

t = 0.7s t = 1.2s

Tower

Fig. 7. We visualize the animation of two dynamic scenes, while comparing our time-dependent guiding distribution with previous methods. We find NPM

tends to learn a marginalized distribution, which is "blurred" over the footprint of all transient contributing areas, while our method learns a fine-grained

distribution that is time-specific. We refer readers to our supplemental video for inspecting detailed scene dynamics and the rendering process.

300 600 900 1200 SPP

0.1

1

1

300 600 900 1200 SPP

0.1

1

1

300 600 900 1200 SPP
0.1

1

1

Clash Tower Rotating Room Moving Veach-Egg
300 600 900 1200 SPP

0.1

1

1

300 600 900 1200 SPP
0.1

1

1

Magic Liquids Colorful Interior

PT Ours (4D) Ours (Progressive)PPG NPM

Fig. 8. Convergence plots of path tracing with BSDF importance sampling (PT), practical path guiding (PPG) [Müller et al. 2017], neural parametric mixtures

(NPM) [Dong et al. 2023], and the two variants (Ours-4D and Ours-Progressive, respectively). Relative MSE is used to visualize the convergence regarding

samples per pixel (spp). We use dashed lines to denote the convergence of Ours-Progressive, as it uses stratified sampling on the extra dimension, which

inherently leads to different convergence plots compared to other methods. Our method consistently outperforms the compared methods on the test scenes.

Dynamic Living-Room

0.169 0.110 RelMSE

0.209 0.100 RelMSE

NPM Ours (4D) Reference

Frame 0

Frame 50

0.31522 0.23736 relMSE

0.29644 0.11345 relMSE

Fig. 9. We pre-train the guiding methods on an animated Pink Room scene

with dynamic geometry and lighting, then compare equal-sample-count

(300spp) performance of both methods. The results on two random frames

are shown. Our method significantly reduces the noise, while using roughly

30% additional frame time on average.

, Vol. 1, No. 1, Article . Publication date: November 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Method
	4.1 Neural Feature Decomposition
	4.2 Progressive Training Scheme
	4.3 Optimization

	5 Implementation
	6 Experiments and Results
	6.1 Rendering Distributed Effects
	6.2 Evaluations
	6.3 Discussion and Limitations

	7 Conclusion and Future Work
	Acknowledgments
	References

